Insulin-sensitizing effect of LXR agonist T0901317 in high-fat fed rats is associated with restored muscle GLUT4 expression and insulin-stimulated AS160 phosphorylation.
نویسندگان
چکیده
BACKGROUND/AIM Liver X receptors (LXRs) are ligand-activated transcription factors that were shown to stimulate hepatic lipogenesis leading to liver steatosis and hypertriglyceridemia. Despite their pro-lipogenic action, LXR activators normalize glycemia and improve insulin sensitivity in rodent models of type 2 diabetes. Antidiabetic action of LXR agonists is thought to result from suppression of hepatic gluconeogenesis. However, it remains unclear whether LXR activation affects muscle insulin sensitivity. In the present study we attempted to answer this question. METHODS The experiments were performed on male Wistar rats fed for 5 weeks on either standard chow or high fat diet. The latter group was further divided into two subgroups receiving either selective LXR agonist - T0901317 (10mg/kg/d) or vehicle during the last week of the experiment. All animals were then anaesthetized and samples of the soleus as well as red and white sections of the gastrocnemius muscle were excised. RESULTS As expected, administration of T0901317 to high-fat fed rats augmented diet-induced hyperlipidemia. Nevertheless, it also normalized glucose tolerance and improved insulin-stimulated glucose uptake in isolated soleus muscle. In addition, LXR agonist completely restored glucose transporter 4 expression and insulin-stimulated Akt substrate of 160 kDa phosphorylation in all investigated muscles. Insulin-sensitizing effect of T0901317 was not related to changes in intramuscular level of lipid mediators of insulin resistance, since neither diacylglycerols nor ceramide content was affected by the treatment. CONCLUSION We conclude that improvement in muscle insulin sensitivity is one of the mechanisms underlying the antidiabetic action of LXR activators.
منابع مشابه
Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...
متن کاملDietary cod protein restores insulin-induced activation of phosphatidylinositol 3-kinase/Akt and GLUT4 translocation to the T-tubules in skeletal muscle of high-fat-fed obese rats.
Diet-induced obesity is known to cause peripheral insulin resistance in rodents. We have recently found that feeding cod protein to high-fat-fed rats prevents the development of insulin resistance in skeletal muscle. In the present study, we have further explored the cellular mechanisms behind this beneficial effect of cod protein on skeletal muscle insulin sensitivity. Rats were fed a standard...
متن کاملMuscle cells engage Rab8A and myosin Vb in insulin-dependent GLUT4 translocation.
Insulin causes translocation of glucose transporter 4 (GLUT4) to the membrane of muscle and fat cells, a process requiring Akt activation. Two Rab-GTPase-activating proteins (Rab-GAP), AS160 and TBC1D1, were identified as Akt substrates. AS160 phosphorylation is required for insulin-stimulated GLUT4 translocation, but the participation of TBC1D1 on muscle cell GLUT4 is unknown. Moreover, there ...
متن کاملDefective Insulin-Induced GLUT4 Translocation in Skeletal Muscle of High Fat–Fed Rats Is Associated With Alterations in Both Akt/Protein Kinase B and Atypical Protein Kinase C (z/l) Activities
The cellular mechanism by which high-fat feeding induces skeletal muscle insulin resistance was investigated in the present study. Insulin-stimulated glucose transport was impaired (;40–60%) in muscles of high fat–fed rats. Muscle GLUT4 expression was significantly lower in these animals (;40%, P < 0.05) but only in type IIa–enriched muscle. Insulin stimulated the translocation of GLUT4 to both...
متن کاملTelmisartan Improves Insulin Resistance of Skeletal Muscle Through Peroxisome Proliferator–Activated Receptor-δ Activation
The mechanisms of the improvement of glucose homeostasis through angiotensin receptor blockers are not fully elucidated in hypertensive patients. We investigated the effects of telmisartan on insulin signaling and glucose uptake in cultured myotubes and skeletal muscle from wild-type and muscle-specific peroxisome proliferator-activated receptor (PPAR) δ knockout (MCK-PPARδ(-/-)) mice. Telmisar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 33 4 شماره
صفحات -
تاریخ انتشار 2014